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Abstract. Assessing the matching error rates of a biometric identifica-
tion devices is integral to understanding its performance. Here we pro-
pose and evaluate several methods for creating approximate confidence
intervals for matching error rates. Testing of biometric identification de-
vices is recognized as inducing intra-individual correlation. In order to
estimate error rates associated with these devices, it is necessary to deal
with these correlations. In this paper, we consider extensions of recent
work on adjustments to confidence intervals for binomial proportions to
correlated binary proportions. In particular we propose a Agresti-Coull
type adjustment for estimation of a proportion. Here that proportion
represents an error rate. We use an overdispersion model to account for
intra-individual correlation. To evaluate this approach we simulate data
from a Beta-binomial distribution and assess the coverage for nominally
95% confidence intervals.

1 Background

Errors often result from the matching process of a biometric identification de-
vice. Depending on the individual attempting to gain access, these errors are
often classified as being either false accepts or false rejects. It is important that
users of these devices have an understanding of the magnitude of these error
rates. Several authors have noted the importance of this knowledge to testers
of biometric devices and for users, see e.g. [1] and [2]. More recently a National
Science Foundation Workshop found that ”there is a need to develop statistical
understanding of biometric systems sufficient to produce models useful for per-
formance evaluation and prediction”, [3]. Because of the binary nature of the
outcome of the matching decision from a biometric device, it is often supposed
that a binomial distribution is appropriate to analyze such data. Several authors
including [1] have noted that a binomial distribution is not appropriate for bio-
metric data under most circumstances. The problem with using the binomial
distribution to describe the data is that it does not allow for intra-individual
correlation in testing. [4] proposed that the Beta-binomial distribution is appro-
priate for describing data taken from a biometric identification device because



it permits correlation within individuals. In that same paper, [4] proposed a
methodology for making confidence intervals using this approach. An updated
version is given in [5].

The purpose of this paper is to determine whether or not the methodology
of interval estimation proposed by Agresti and Coull in [6] can be applied to a
Beta-binomial distribution, and to establish an appropriate manner in which to
do so. The approach of Agresti and Coull was to add four additional observations
(two successes and two failures). They applied their approach to the binomial
distribution, specifically for estimation of proportions. We are motivated in ap-
plying their methodology to Beta-binomial proportions because data taken from
a biometric device often follows a Beta-binomial distribution. Again, our appli-
cation is to overall error rates. To extend Agresti and Coull’s approach to the
Beta-binomial, we consider several methods for applying their approach and we
will evaluate these by simulating data from a variety of parameter combinations.
We will then compare these methods to the unaugmented approach of [5].

2 Background and Notation

We use a parametric approach for modelling the data from a biometric device.
We follow the approach of [5] and use the notation found therein. Assume that
we are interested in estimating an overall error rate – either the false accept
rate (FAR) or false reject rate (FRR)– of π. Further, let n be the number of
individuals tested and mi be the number of times that the individual is tested,
i = 1, . . . , n. Agresti and Coull [6] suggested adding two “successes” and two
“failures” to binomial data as a way to improve estimation. In the case of the
binomial since all trials are independent, augmenting the data is straightforward.
For correlated binary data any augmentation is not straightforward because
of the correlated structure induced by having multiple individuals tested. We
shall consider several ways to distribute these additional “observations”. With
these changes, some individuals will have up to four additional tests added. As
will become apparent, this is not the case for Beta-binomial data. We call the
occurrence of an error a “success”, S; a “failure”, F, would be the event that an
error does not occur. Let

Xi =
mi∑

j=1

ωij .

And let

ωij =
{

0
1

if S

if F

}
(1)

for the jth attempt by the ith individual. Hence, Xi represents the number of
errors by the ith individual and let pi = Xi/mi represent the percentage of
errors in mi attempts made by the ith individual. In this paper we follow [4] in
assuming an extravariation or overdispersion model for the data. Formally we



assume that

E[Xi] = miπi

and
V ar[Xi] = miπi(1− πi)(1 + (mi + 1)ρ) (2)

where ρ is the intra-individual correlation of the observed data [4]. The intra-
individual correlation, measures the similarity of outcomes within a single indi-
vidual [7] relative to the overall variability of the Xi’s. It is worth mentioning
here that if ρ = 0 then this model simplifies to the binomial model. Using the
notation described above, we can now estimate π and ρ. Estimates of param-
eters will be denoted with a “hat”. Once these values are estimated we can
derive confidence intervals for the error rate, π. To begin, suppose that we have
tested a biometric identification device and have observed the Xi’s. For our pur-
poses, instead of taking data from an actual biometric identification device, we
conducted simulations using the statistical software R. This allowed us to test
performance of the proposed confidence intervals for a variety of different values
for the parameters π and ρ. For estimation we then use,

π̂ =
∑

Xi

mn

ρ̂ =
BMS −WMS

BMS + (m0 − 1)WMS

where

BMS =
∑

mi(pi − π̂)2

n− 1
,

WMS =
∑

mipi(1− pi)
n(m̄− 1)

and

m0 = m̄−

n∑
i=1

(mi − m̄)2

nm̄
. (3)

The confidence interval for π in then

π̂ ± 1.96
[
π̂(1− π̂)(1 + (mo − 1)ρ̂)

m̄n

]1/2

. (4)

The above methodology for estimating ρ is based on an ANOVA-type estimator
given by [8]. In Equation (3) BMS represents between mean squares and WMS
represents within mean squares.

3 Proposed Methods

The augmentation of the binomial proposed by [6] involves adding two “suc-
cesses” and two “failures” to the observed successes and failures. For our pur-
poses this is equivalent to adding two additional errors on four additional at-
tempts. As mentioned above, we assume data is collected on n individuals each



of which is tested mi times i = 1, . . . , n. Hence, we have n individuals with
mi binary observations each. The correlated structure of this data implies that
adding two ”successes” and two ”failures” is not simple. We need to consider
how to distribute these “successes” and “failures” among the n individuals. We
have developed four specific approaches for doing this. We refer to these methods
as A1, A2, A3, and A4. These methods will be compared to the unaugmented
approach of [9] which we label A0. For all of these methods, we implicitly as-
sume that the individuals are ordered randomly. If that is not the case then the
individuals who receive additional “observations” as part of the augmentation
need to be randomly chosen.

3.1 Approach 1 (A1)

The first approach involves adding two ”successes” and two ”failures” to a single
individual, in this case the first individual. For simplicity with this and other
approaches we assume mi = m for all i initially. Extensions to the more general
case are straightforward. Thus,

mi =
{

m + 4
m

for i = 1
for i = 2, . . . , n

(5)

and

Xi =





mi∑
j=1

ωij + 2

mi∑
j=1

ωij

for i = 1
for i = 2, . . . , n.

(6)

We then use Equation (4) to develop a confidence interval based on the updated
values for the Xi’s and the mi’s. Hence, the first individual tested effectively
undergoes four additional tests, two of which result in a “success” and two
of which result in a “failure”. For example, if n = 1000 and each individual

underwent 5 tests, then we let m1 = 5 + 4 = 9 and X1 =
5∑

j=1

ωij + 2, while

mi = 5 and Xi =
5∑

j=1

ωij for all i = 2, 3, . . . , 1000.

3.2 Approach 2 (A2)

Another approach would be to distribute the additional attempts and errors
equally among two individuals. This is our second approach. Thus,

mi =
{

m + 2
m

for i = 1, 2
for i = 3, . . . , n.

(7)

and

Xi =





mi∑
j=1

ωij + 1

mi∑
j=1

ωij

for i = 1, 2
for i = 3, . . . , n.

(8)



Hence, there were two additional tests added to both the first and second indi-
viduals. Each of these two individuals receives one “failure” and one “success”.
Again we assume that individuals are numbered randomly.

3.3 Approach 3 (A3)

The third approach adds an additional test to four separate individuals. Two of
those individuals receive a “success”; the other two receive a “failure”. Thus we
augment the data in the following manner

mi =
{

m + 1
m

for i = 1, 2, 3, 4
for i = 5, . . . , n

(9)

and

Xi =





mi∑
j=1

ωij + 1

mi∑
j=1

ωij

for i = 1, 2
for i = 3, . . . , n.

(10)

By this method the four individuals effectively undergo one additional test each.
For individuals 1 and 2 this test results in a “success”, while for individuals 3
and 4 the additional test results in a “failure”.

3.4 Approach 4 (A4)

The final augmentation approach involves adding an n + 1st individual who re-
ceives two “successes” and two “failures”. Note that this methodology is different
from the previous approaches in that we are also altering n. Thus,

mi =
{

m

m + 4
for i = 1, . . . , n

for i = n + 1
(11)

and

Xi =





mi∑
j=1

ωij + 1

2

for i = 1, . . . , n

for i = n + 1.
(12)

4 Evaluation

Our approach to evaluating these methods is to use simulated data. We choose
this approach over application to observed test data because it allows us to test
many different parameter values and parameter combinations. To evaluate each
of these methods, we simulate data from a variety of parameter values. To test
the estimated proportion we use Equation (4) which provides a nominally 95%
confidence interval. As has been stated, the goal is to test the performance of



Table 1. Coverage for A0

n = 1000 n = 1000
m = 5 m = 10

ρ ρ

π 0.001 0.01 0.1 0.4 0.001 0.01 0.1 0.4

0.002 0.931 0.928 0.926 0.866 0.951 0.953 0.904 0.854
0.004 0.947 0.951 0.942 0.883 0.941 0.939 0.932 0.907
0.008 0.955 0.940 0.926 0.931 0.944 0.945 0.945 0.933
0.010 0.937 0.951 0.952 0.926 0.952 0.954 0.956 0.938

n = 2000 n = 2000
m = 5 m = 10

ρ ρ

π 0.001 0.01 0.1 0.4 0.001 0.01 0.1 0.4

0.002 0.947 0.950 0.930 0.908 0.934 0.942 0.937 0.907
0.004 0.944 0.953 0.948 0.922 0.948 0.945 0.931 0.935
0.008 0.947 0.955 0.940 0.948 0.941 0.963 0.945 0.944
0.010 0.937 0.957 0.950 0.932 0.935 0.951 0.939 0.932

Table 2. Coverage for A1

n = 1000 n = 1000
m = 5 m = 10

ρ ρ

π 0.001 0.01 0.1 0.4 0.001 0.01 0.1 0.4

0.002 0.969 0.962 0.963 0.936 0.961 0.955 0.950 0.907
0.004 0.953 0.960 0.952 0.942 0.959 0.956 0.942 0.932
0.008 0.955 0.956 0.951 0.933 0.941 0.949 0.942 0.927
0.010 0.946 0.954 0.948 0.949 0.958 0.950 0.941 0.949

n = 2000 n = 2000
m = 5 m = 10

ρ ρ

π 0.001 0.01 0.1 0.4 0.001 0.01 0.1 0.4

0.002 0.964 0.963 0.958 0.946 0.946 0.949 0.945 0.926
0.004 0.952 0.944 0.959 0.947 0.947 0.951 0.950 0.924
0.008 0.947 0.941 0.947 0.948 0.949 0.943 0.955 0.944
0.010 0.957 0.952 0.948 0.944 0.957 0.959 0.954 0.951



the confidence interval given above. We use simulations of data given n, m, π, ρ.
Running the simulations under a given set of parameters, we create a confidence
interval for each data set and then compare this interval to our actual error rate.
We then determine whether or not the interval contains, or “captures”, π. For
repeated generation of data, we expect that the percent of times that π falls
in the interval created is 95%. (Recall that the definition of a 95% confidence
interval is that P (π̂L < π < π̂U ) = 0.95 where π̂L and π̂U are the lower and upper
endpoints of that interval respectively.) We will refer to the proportion of times
that π is within the range of the 95% confidence interval as the coverage. We
will use this value to assess the overall performance of an approach. Since we use
a 95% confidence interval of the estimated error rate, we expect the coverage to
be 95% percent. We desire coverage that is close to 95%. The closer the coverage
is to this value, the better the performance of the approach. Coverage that is
too low is deficient in that it does not meet the criteria for a 95% confidence
interval. Coverage that is too high is too conservative in the statistical sense that
it yields intervals that are too wide.

Table 3. Coverage for A2

n = 1000 n = 1000
m = 5 m = 10

ρ ρ

π 0.001 0.01 0.1 0.4 0.001 0.01 0.1 0.4

0.002 0.967 0.961 0.958 0.922 0.949 0.947 0.941 0.891
0.004 0.949 0.952 0.952 0.938 0.946 0.947 0.938 0.927
0.008 0.954 0.956 0.941 0.936 0.955 0.964 0.958 0.934
0.010 0.944 0.952 0.964 0.951 0.964 0.950 0.952 0.939

n = 2000 n = 2000
m = 5 m = 10

ρ ρ

π 0.001 0.01 0.1 0.4 0.001 0.01 0.1 0.4

0.002 0.942 0.956 0.956 0.942 0.943 0.958 0.954 0.939
0.004 0.949 0.957 0.951 0.956 0.949 0.952 0.952 0.939
0.008 0.960 0.949 0.945 0.943 0.947 0.953 0.947 0.944
0.010 0.950 0.951 0.951 0.943 0.943 0.952 0.955 0.953

The parameters used in the simulation of each approach are: n = (1000, 2000),
m = (5, 10), π = (0.002, 0.004, 0.008, 0.01), and ρ = (0.001, 0.01, 0.1, 0.4). 1000
data sets were generated under each scenario. Data were generated from a Beta-
binomial distribution. The scenarios – combinations of parameters – are investi-
gated to see how the changes in the parameters make a difference in the coverage.



The values of π were chosen to be representative of error rates produced by a
BID [5]. The results of these simulations are given in Tables 1-5. Again we use
simulated data because it allows us to test the performance of various parameter
combinations.

Table 4. Coverage for A3

n = 1000 n = 1000
m = 5 m = 10

ρ ρ

π 0.001 0.01 0.1 0.4 0.001 0.01 0.1 0.4

0.002 0.965 0.944 0.952 0.929 0.950 0.946 0.949 0.896
0.004 0.954 0.950 0.944 0.925 0.953 0.957 0.946 0.926
0.008 0.961 0.949 0.940 0.950 0.948 0.947 0.938 0.928
0.010 0.956 0.957 0.942 0.939 0.944 0.950 0.953 0.939

n = 2000 n = 2000
m = 5 m = 10

ρ ρ

π 0.001 0.01 0.1 0.4 0.001 0.01 0.1 0.4

0.002 0.940 0.942 0.955 0.939 0.957 0.958 0.951 0.913
0.004 0.948 0.945 0.952 0.941 0.949 0.941 0.942 0.935
0.008 0.960 0.956 0.957 0.934 0.943 0.952 0.950 0.943
0.010 0.958 0.951 0.957 0.953 0.954 0.944 0.947 0.941

5 Results

As we examine the data in the tables, we begin with the trends that occur in
all data sets regardless of the approach used. First, as π, n and m increase, the
coverage increases. Coverage also increases as ρ decreases. These trends hold for
all approaches. It is also apparent that as ρ increases above 0.1, the coverage
decreases significantly. Again, ρ governs the degree of independence in the data.
High values of this parameter imply less independent information in the data.
Another way to think of this is that the effective sample size is nm̄

1+(m̄−1)ρ , which
is equivalent to the number of independent observations in the data. From this
formula, it is clear that the effective sample size decreases as ρ increases.

A phenomenon that can be seen from the data tables below is what has
been called the “Hook Paradox” and occurred similarly in [5]. The paradox is
that when ρ is large as the number of tests per individual, mi increases, the
coverage decreases. This is an unexpected result. It is especially apparent in



the data when ρ = 0.4 and the error rate π is small. For example, in Table 2
when n = 1000,m = 5, π = 0.002, ρ = 0.4, the coverage is 0.936, but when m is
changed to 10, the coverage decreases to 0.907. Intuitively, the coverage should
increase as mi increases since there are a larger number of tests taken. This
pattern seems to occur for several confidence interval methods [9].

Turning to individual approaches, it is evident that all four approaches (A1-
A4) that are modified using the Agresti and Coull adjustment (Tables 2-5) per-
form better than the original approach (A0) (Table 1). One method to examine
coverage is to determine if it is within two standard deviations of the nominal
confidence level. Here for 95% confidence intervals, the standard deviation is

calculated to be
√

0.95(1−0.95)
1000 . (Note that coverage probabilities should follow

a binomial sampling distribution assuming the nominal coverage probability of
95% is correct.) Thus, a reasonable range of values for coverage is 0.950± 2σ or
(0.936, 0.964). Below we report the minimum coverage, the maximum coverage
and the mean coverage.

A0, proposed by [4] and seen in Table 1, had the worse coverage values of the
five approaches. The coverage values for the A0 range from 0.866 to 0.963 and
the mean coverage was 0.937. The data for A1-A3, seen in Tables 2-4, indicates
that they all have approximately the same performance. A1 has a minimum
coverage value, mean coverage value, and maximum coverage value of 0.907,
0.949, and 0.969, respectively. The same values for A2, given in the same order
are 0.891, 0.948, and 0.967. These values given for A3 are 0.896, 0.946, and 0.965.
The data for A4 shows that the coverage values were higher than the other four
approaches. The range of values went from 0.907 for a minimum up to 0.985 for
a max, which is well above the max coverage values of the other approaches. The
mean of 0.957 is also high, but still better in comparison with the low mean of
0.937 that A0 generated.

Additionally, we summarize these results in Table 6. The percentages of cov-
erage values falling below 0.95− 2σ are given in column 2. Using this manner of
evaluation, we see that A0 has the worst performance with 34.38% of coverages
falling below the acceptable range. A2 and A4 performed the best each having
4.69% of values below the acceptable range. It is noteworthy that approximately
2.50% should fall below this range by chance alone.

Next, we compare the minimum coverage value, the mean coverage, and the
maximum coverage value for each approach (columns 4-6 of Table 6). Looking
at minimum coverage values, A0 has the lowest value with 0.866. The highest
minimum coverage value belongs to A1 and A4 with 0.907. The mean coverage
tells us a lot about overall performance of an estimation method. A1-A4 all
perform very well, much better than the A0. They all have a mean close to
0.950. As can be seen from a max coverage of 0.985, A4 gives coverage values
that are relatively high in comparison with the other approaches, but every
augmented approach gives higher coverage values than the original unaugmented
Beta-binomial approach.

On the whole, every augmented approach performed very well. The perfor-
mances of A1-A3 were approximately the same. There are not any factors that



Table 5. Coverage for A4

n = 1000 n = 1000
m = 5 m = 10

ρ ρ

π 0.001 0.01 0.1 0.4 0.001 0.01 0.1 0.4

0.002 0.985 0.980 0.984 0.952 0.976 0.979 0.968 0.907
0.004 0.965 0.966 0.963 0.951 0.970 0.961 0.958 0.927
0.008 0.956 0.958 0.956 0.943 0.966 0.968 0.950 0.937
0.010 0.970 0.965 0.954 0.943 0.950 0.958 0.964 0.953

n = 2000 n = 2000
m = 5 m = 10

ρ ρ

π 0.001 0.01 0.1 0.4 0.001 0.01 0.1 0.4

0.002 0.959 0.968 0.969 0.954 0.963 0.963 0.961 0.936
0.004 0.957 0.953 0.958 0.934 0.965 0.957 0.956 0.939
0.008 0.957 0.963 0.940 0.950 0.962 0.960 0.961 0.947
0.010 0.945 0.945 0.954 0.947 0.960 0.971 0.959 0.946

clearly show one of these approaches performing significantly better than the oth-
ers. A4 performed very well, but quite often had coverage values much greater
than 0.950. When ρ ≤ 0.1, this approach gives values very near to 0.950. One
alternative in the future would be to construct a confidence interval approach
that utilizes one of the augmented approaches A1-A3 when ρ is small and A4
when ρ is large.

Table 6. Overall summary of results

% below minimum mean maximum
Approach 0.95− 2σ coverage coverage coverage

A0 34.38 0.866 0.937 0.963

A1 7.81 0.907 0.949 0.969

A2 4.69 0.891 0.948 0.967

A3 12.50 0.896 0.946 0.965

A4 4.69 0.907 0.957 0.985

Several areas for future research are suggested by this work. First a study
of the property of estimators of the intra-cluster correlation to determine the
reasons for the hook paradox seems warranted. Each of the four augmented ap-



proaches performed better than the original approach, so we are able to conclude
that the changes proposed by [6] improve inference for the mean error rate from
a Beta-binomial distribution. However, since our estimators performed poorly
as ρ increased, we may want to consider adding observations as a function of
ρ. One such solution might be to add 2 ∗ (1 + (m̄ − 1)ρ) “successes” out of
4 ∗ (1+ (m̄− 1)ρ) attempts. Note that 1+ (m̄− 1)ρ is known as the design effect
or deff and reduces to 1 for the binomial.

Our evaluation of each approach shows that with any one of the augmentation
methods used, proportion estimation improved significantly. Hence, headway has
been made in the estimation of error rates incurred by biometric identification
devices. Of the four augmented approaches, A4 had the best performance and
A1-A3 performed approximately the same. Although many of the coverage val-
ues were outside the desired range for A4, most of them were above 0.950. Hence
the coverage of 95% was not only reached, but often also surpassed. Though we
prefer our coverage values to be nearly 0.950, we are willing to trade a slightly
wider interval for increased coverage in this case. In the end A4 had the best
performance in error rate estimation, but all of the methods proposed here rep-
resents an improvement over the unaugmented approach, A0.
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