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This paper discusses use of the Beta-binomial distribution to estimate the matching performance of a biometric identification device. Specifically, the Beta-binomial distribution can be used to assess the variability in estimates of the false match and false non-match rates when multiple users are tested more than once. This method accounts for the extraneous variability in this scenario and allows for the creation of confidence intervals under certain regularity conditions.  The Beta-binomial differs from the binomial in that it models the extra-variation that is due to a lack of marginal independence among the observations.  The Beta-binomial also has the flexibility to model the correlation of observations by the same individual that the binomial does not possess.  I discuss maximum likelihood methodology for estimating the parameters of the Beta-binomial distribution.  Finally, examples are given for simulated data that explicate this methodology.
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1. Background

Biometric Identification Devices (BID) compare a physiological measure of a subject to a database of stored templates.  The goal of any BID is to correctly match those two quantities.  As acknowledged in a variety of papers6,7, there is a pressing need for assessing the uncertainty in estimating the performance of a BID.  The modified Receiver Operating Characteristic (ROC) curve is a common method for considering the overall performance of a BID.  An ROC curve is a plot of false non-match rates (FNMR) against false match rates (FMR), where each can be represented parametrically as a function of decision threshold.  Consequently, accurate methodologies for assessing FNMR and FMR are needed.

      At present there is no consensus on a methodology for assessing the performance of a biometric device when two or more individuals are tested.  In particular, as noted in Refs. 6 and 7, the binomial distribution is incorrect when more than one individual attempts to match.


      The Beta-binomial distribution that is described in this paper is a generalization of the binomial distribution that allows for correlation between trials for a given individual.  Consequently, the Beta-binomial can be an appropriate model where the binomial is inappropriate.  In this paper, I present a derivation of the Beta-binomial in terms of the binomial since the binomial should be familiar to most readers.   

      Most tests of BID's utilize more than one individual and, for efficiency, that individual is tested more than once. More importantly, the goal of any test is to assess how the BID would perform when implemented on a population of users.  The binomial model is not appropriate when the probability of “success” varies from individual to individual8.   This is also implicitly noted in [7].  Because it is thought that each individual will have their own probability of success4, then p, the usual binomial parameter for probability of success, is not the same for each user. Thus, the binomial is not appropriate for assessing the performance of a BID when combining outcomes from multiple users.  Consequently, we need a model that allows for variability in the probability of success among individuals and that allows for the possibility that trials by a given individual are not independent.  One such model is the Beta-binomial model or, more formally, the product Beta-binomial.

     The Beta-binomial is derived in the following manner.  Suppose that we have m individuals and each of those individuals is tested ni times, where i = 1, …,m.  Assume that 
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We then further model each of the pi as conditionally independent draws from a Beta distribution.  The Beta distribution is a continuous distribution on the interval [0,1] and it is parameterized with two quantities,  and .  Letting pi have a Beta distribution, the probability density function is then
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The mean and the variance for a Beta random variable are given by 
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The joint distribution is then,
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where 
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Now inference for this hierarchical model should be focused on  and , since they define the overall probability of success.  Consequently, we can integrate out the pi’s because they are now nuisance parameters.  Thus, 
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Equation (4) is referred to as a joint Beta-binomial distribution or product Beta-binomial distribution.  Let 
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represent Xi coming from a Beta-binomial distribution conditional on the parameters ,  and ni.  Thus, we assume that the Xi 's are conditionally independent draws from a Beta-binomial distribution with parameters ,  and ni.  Under that distribution, 
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.  At this juncture, a few comments about the Beta-binomial distribution are warranted.

· The Beta-binomial distribution is often called an extravariation model.   The reason for this is that it allows for greater variability among the variates, the xi's, than the binomial distribution. The additional term, C, allows for additional variability beyond the (1-) that is found under the binomial model.  (Recall that the variance of a Binomial random variate is np(1-p) ).

· Let =  + .  Then  determines the amount of variability in the Beta-binomial random variable beyond that found in the binomial.  If the Beta-binomial model is correct and the binomial model is used, then the variance will be understated by a factor of C and, hence, confidence intervals will be understated by a factor of  C½.  

· 1 ( C ( ni.  If  is large, then C (1  and the variability approaches ni (1-) --  what we would expect under a Binomial model.  When  is large, it indicates that individual probabilities are very similar and hence the variability resembles that of the binomial distribution.  If  is small, then C ( ni   and the variability approaches 
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· The flexibility that the Beta-binomial exhibits is a result of the two-parameter nature of the Beta-binomial distribution.  Thus, it can exhibit more plasticity than the one-parameter binomial.
· The appropriateness of the Beta-binomial distribution is dependent upon how well the Beta distribution can represent the population of pi's.  Other authors 2 have noted the flexibility of the Beta distribution.  Taking values on the interval [0,1], the distribution is unimodal if  >1 and  >1.  If both  and  are 1, then the Beta distribution is equivalent to the continuous Uniform distribution on that interval.  If only one of these parameters are less than 1, then the distribution is J-shaped or reverse J-shaped.  If both are less than 1, the distribution is U-shaped.

2. Estimation

In the previous section, I described the Beta-binomial distribution.  The discussion there focused on probabilistic aspects of the Beta-binomial distribution.  This section discusses estimation for the parameters of the Beta-binomial distribution. In particular, maximum likelihood (ML) techniques for estimation of  and  will be presented following 8.

      Maximum likelihood methods are frequently used in statistical applications.  The basic underlying idea for ML estimation is to find the parameter value most likely to have produced the observed data. For example, given data Y from a sampling distribution f(Y|() with parameter (, the likelihood function L((|Y) is the sampling distribution treating the data as known and the parameter as unknown. Note that both Y and  are potentially vector-valued.  When a unique ML estimate exists, reference [5] defines the ML estimate of ( as any 
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      It is often convenient to work with the natural logarithm of the likelihood function,  l((|Y) = ln L((|Y), since maximizing the log-likelihood, l, is equivalent to maximizing the likelihood.  

      For a variety of distributions, e.g. the Gaussian and the Binomial, the ML estimate can be found in closed form.  However, for the Beta-binomial distribution, no closed form solution exists. Consequently, it is necessary to use numerical computation to estimate  and .  For numerical stability, it is often necessary to transform the parameters to another scale.  Methodology to accomplish this is given in [8].  We can obtain standard errors for ML estimates based on the curvature of the log-likelihood at 
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.   Reference [1] and others note that we can make confidence intervals for ( based on these ML estimates and their standard errors.

3. Examples

This section presents several examples to illustrate the usage of the Beta-binomial distribution to estimate overall system matching performance.  For each of these cases, data was created to represent possible outcomes from a test of a BID.  I assume that m individuals were tested for each of k times.  For simplicity, suppose that each individual was tested the same number of times, so that ni  =  k for each individual, i.  (Note that the methodology of this paper can accommodate each individual being tested a different number of times.)  Simulated data sets were created to illustrate features of the methodology that I have outlined in the previous sections of this paper.  To estimate the parameters of the Beta-binomial distribution, I used a Newton-Raphson algorithm programmed in S-plus(.  For the examples below, each of six data sets is described.  Appropriate point and interval estimates of the population failure rate, , are given in Table 1.  These two estimates are the most relevant to assessing BID matching performance.

     For the first, second and third data sets, m =20 and k = 10, and in each data set, there were a total of four failures in the 200 attempts.  Thus the rate of failure, , was 0.02 in each data set.   For the first data set, 16 individuals had no failures, while the remaining four individuals each had one failure.  For the second data set, 17 individuals had no failures.  Of the remaining three individuals, two had one failure and one had two failures.  For the third data set, 18 individuals had no failures, while one individual had one failure and the remaining individual had three failures.  The variability in 
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 is different in each of these situations, as seen in Table 1, where
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is the estimated standard error of .  As the failures coalesce to a single individual, there is increasing variability in the pi's and, hence, in the variability of the estimate of .   

Table 1.  Simulated data

	Data Set


	m
	k
	Individuals w/ no failures
	Individuals w/ one failure
	Individuals w/ two failures
	Individuals w/ three failures
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	1
	20
	10
	16
	4
	0
	0
	0.0200
	0.0111

	2
	20
	10
	17
	2
	1
	0
	0.0200
	0.0117

	3
	20
	10
	18
	1
	0
	1
	0.0194
	0.0161

	4
	240
	10
	232
	8
	0
	0
	0.0033
	0.0013

	5
	240
	10
	234
	4
	2
	0
	0.0033
	0.0015

	6
	240
	10
	236
	0
	4
	0
	0.0033
	0.0019


     For the fourth, fifth and sixth data sets, m =240 and k = 10, and each data set contained eight failures, for an observed failure rate of 8 out of 2400 or  0.0033.  For the fourth data set, eight individuals had one failure each.  For the fifth data set, four individuals each had one failure and two individuals had two failures.   For the sixth data set, four individuals had two failures each.  The remaining individuals in all three data sets had no failures.

     Before considering the results of the analysis of these data sets, we should recall what the binomial estimates would be.  For the first three data sets, the binomial estimate of  would be 
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 = 0.02 and the standard error of  would be 
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 = 0.0098.  For data sets four through six, the binomial estimate of  would be 
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 = 0.0033 and the standard error of  would be
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 = 0.0012 for all three data sets.  From the first three data sets, we observe exactly what we would expect.  The estimated proportion for data set 3 is slightly lower than would be expected but that this is likely due to numerical computation.   The 
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's are nearly identical for all the data sets.  The estimated proportion for data set 3 is slightly lower than would be expected, but that this is likely due to numerical computation.  In addition, the variability increases as the data sets become diversified. That is, in data sets one and four, there is smaller variability in the observed individual proportions than there is in the other data sets.  Consequently, the estimated standard errors are smallest for data sets one and four and largest for data sets 3 and 6.  In the latter data sets, the concentrations of failures are most pronounced.  For all of these examples, the estimated standard errors from the Beta-binomial model are larger than those from the binomial model.  This is as we would anticipate.  Thus, a degree of correlation has been detected by the Beta-binomial model.

4. Discussion

For any biometrics identification device, assessing its matching performance is often critical to the success of the product from the viewpoint of both the vendor and the consumer.  Two numbers that are often cited as essential to this assessment are the false match rate (FMR) and the false non-match rate (FNMR).  At present, there is no widely accepted methodology for assessing the variability in the estimated FMR and FNMR when multiple users are tested multiple times.  In this paper, I have presented a methodology that can be used to estimate this variability as well as to make confidence intervals from these estimates.  Such confidence intervals are based upon asymptotic Normality.

      As with any numerical assessment, it is important to assess the results individually.  This is especially true for maximization/minimization routines such as the Newton-Raphson algorithm used here.  It is important to verify that any result is a global maxima/minima rather than a local one.

      Based upon the descriptions of the distributions of the pi's in the literature4,7, the Beta-binomial seems an appropriate distribution for assessing the matching performance of a BID.  As has been illustrated, the Beta-binomial differs from the binomial in several manners.  Most important for assessing the performance of a BID is the ability to model non-independent dichotomous responses.

      One difficulty that may make the Beta-binomial inappropriate is the problem of “goats” and “sheep”4. Under this scenario, the distribution of pi's may be bimodal and the Beta distribution is inappropriate under these circumstances.  It would, however, be possible to model a bimodal population of pi's with a mixture of Beta distributions3.  One possible avenue of future work would be to consider an analysis of failure rates based upon a mixture of Beta-binomial distributions.

      Another area of concentration for the testing and assessment of BID's is a methodology for sample size calculation.  Specifically, that means a way to determine the size of m and k to achieve a given amount of variability for a given confidence level.  Techniques based upon the Beta-binomial distribution may make this possible.
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