Theoretical Statistical Correlation for Biometric Identification Performance

Michael E. Schuckers

schuckers@stlawu.edu

Overview

Problem Statement: There is a need for appropriate statistical methods for estimation of the performance measures for biometric identification devices.

Contribution: This paper lays out **general** correlation structure that allows for estimation, specifically standard errors, for FTE, FTA, FMR, FNMR.

• Enrollment, (E_i)

- **•** Enrollment, (E_i)
- **•** Acquisition, (A_{ij})

- **•** Enrollment, (E_i)
- **•** Acquisition, (A_{ij})
- **•** Feature Extraction, $(S_{ik}, \mathbf{X}_{ik})$

- **•** Enrollment, (E_i)
- **•** Acquisition, (A_{ij})
- **•** Feature Extraction, $(S_{ik}, \mathbf{X}_{ik})$
- Matching, $(Y_{ik,i'k'})$

- **•** Enrollment, (E_i)
- **•** Acquisition, (A_{ij})
- **•** Feature Extraction, $(S_{ik}, \mathbf{X}_{ik})$
- Matching, $(Y_{ik,i'k'})$
- **Decision,** $(D_{ik,i'k'})$

Failure to Enrol (FTE)

Notation

(1)
$$E_i = \begin{cases} 1 & \text{if individual } i \text{ is unable to enroll} \\ 0 & \text{otherwise.} \end{cases}$$

Failure to enroll (FTE) rate is

(2)
$$FTE = \frac{\sum_{i \in \mathcal{E}} E_i}{N_E}.$$

where N_E is the total number of individuals who attempted to enrol in the system.

Failure to Acquire (FTA)

Notation

(3)
$$A_{ij} = \begin{cases} 1 & \text{if the } j^{th} \text{ acquisition attempt by} \\ & \text{individual } i \text{ is not acquired} \\ 0 & \text{otherwise.} \end{cases}$$

where

- \bullet a_i is the total number of attempts for the i^{th} individual
- A represents all individuals who attempt to have their biometric image collected.

Failure to acquire (FTA) rate is

(4)
$$FTA = \frac{\sum_{i \in \mathcal{A}} \sum_{j=1}^{a_i} A_{ij}}{\sum_{i \in \mathcal{A}} a_i}$$

False Match Rate (FMR)

Notation

(5)
$$D_{ii'\ell} = \begin{cases} 0 & \text{if } i \neq i', Y_{ik,i'k'} > \tau \\ 1 & \text{if } i \neq i', Y_{ik,i'k'} \leq \tau \end{cases}$$

False match rate (FMR) is then

(6)
$$FMR = \frac{\sum_{i} \sum_{i' \neq i} \sum_{\ell} D_{ii'\ell}}{\sum_{i} \sum_{i' \neq i} n_{ii'}}$$

where $n_{ii'}$ is the number of decisions on the ordered pair of individuals *i* and *i'*.

False Non-Match Rate (FNMR)

Notation

(7)
$$D_{ii'\ell} = \begin{cases} 1 & \text{if } i = i', Y_{ik,ik'} > \tau \\ 0 & \text{if } i = i', Y_{ik,ik'} \le \tau \end{cases}$$

False non-match rate (FNMR) is then

(8)
$$FNMR = \frac{\sum_{i} \sum_{\ell} D_{ii\ell}}{\sum_{i} n_{ii}},$$

where n_{ii} is the number of decisions on individual *i*.

Statistical Methods

Estimated FTE, FTA, FMR, FNMR are all linear combinations of binary RV's

- Linear Combination $R^{\star} = \sum_{v} b_{v} R_{v}$
- Expectation $E[R^*] = \sum_{v=1}^{V} a_v E[R_v]$
- Variance $V[R^*] = \sum_{v=1}^{V} \sum_{w=1}^{V} a_v a_w Cov(R_v, R_w)$

• If variance is constant then $V[R^{\star}] = \sigma_R^2 [\sum_{v=1}^V a_v^2 + 2 \sum_{v=1}^V \sum_{w>v}^V a_v a_w Corr(R_v, R_w)].$

Assumptions

For the rest of this paper, we assume that FTE, FTA, FMR, and FNMR

- Constant mean
- Constant variance/covariance/correlation
- Get simple right move to more complicated
- **E**'s, A's, D's are binary (variance \propto mean(1-mean))
- Work from correlation

Which of the following rows of binary sequences is correlated?

A1011100001

Which of the following rows of binary sequences is correlated?

- **A**1011100001
- **B**000000010

Which of the following rows of binary sequences is correlated?

- A 1 0 1 1 1 0 0 0 0 1
- **B**000000010
- **• C** 1 1 1 1 0 1 1 1 1 1

Which of the following rows of binary sequences is correlated?

- A 1 0 1 1 1 0 0 0 0 1
- **B**000000010
- C 1 1 1 1 0 1 1 1 1 1
- D 1 0 1 1 0 0 1 0 0 0

Which of the following rows of binary sequences is correlated?

- A 1 0 1 1 1 0 0 0 0 1
- **B**000000010
- C 1 1 1 1 0 1 1 1 1 1
- D1011001000

Answer: None, all are binomial $\rightarrow Corr = 0$

Which of the following rows of binary sequences is correlated?

- A 1 0 1 1 1 0 0 0 0 1
- **B**000000010
- C 1 1 1 1 0 1 1 1 1 1
- D1011001000

Answer: None, all are binomial $\rightarrow Corr = 0$

Correlation Structure: FTE

Uncorrelated Between Individuals Structure

(9)
$$Corr(E_i, E_{i'}) = \begin{cases} 1 & \text{if } i = i' \\ 0 & \text{otherwise.} \end{cases}$$

Then estimated variance is

(10)
$$V[F\hat{T}E] = \frac{F\hat{T}E(1 - F\hat{T}E)}{N_E}$$

Correlation Structure: FTA

Intra-individual Correlation

(11)
$$Corr(A_{ij}, A_{i'j'}) = \begin{cases} 1 & \text{if } i = i', j = j' \\ \psi & \text{if } i = i', j \neq j' \\ 0 & \text{otherwise.} \end{cases}$$

Then estimated variance is

(12)
$$V[F\hat{T}A] = \frac{F\hat{T}A(1 - F\hat{T}A)}{N_A^2} \left[N_A + \psi \sum_{i=1}^n a_i(a_i - 1) \right]$$

where $N_A = \sum a_i$.

Correlation Structure: FNMR

Intra-individual Correlation

(13)
$$Corr(D_{ii\ell}, D_{i'i'\ell'}) = \begin{cases} 1 & \text{if } i = i', \ell = \ell' \\ \rho & \text{if } i = i', \ell \neq \ell' \\ 0 & otherwise \end{cases}$$

$$V[FNMR] = \frac{FNMR(1 - FNMR)}{N_G^2} \left[N_G + \rho \sum_{i=1}^n n_{ii}(n_{ii} - 1) \right]$$
(14)
where $N_G = \sum n_{ii}$.

Correlation Structure: FMR

Shared elements of a pair correlation OR ALL HELL BREAKS LOOSE

(15) $Corr(D_{ik\ell}, D_{i'k'\ell'}) =$

Correlation Structure: FMR (Variance)

$$V[FN\hat{M}R] = \frac{FN\hat{M}R_{I}(1-FN\hat{M}R)}{N_{I}^{2}} \left[N_{I} + \eta \sum_{i=1}^{N} \sum_{\substack{k=1\\k\neq i}}^{N} n_{ik}(n_{ik}-1) + \omega_{1} \sum_{i=1}^{N} \sum_{\substack{k=1\\k\neq i}}^{N} n_{ik}\left(\sum_{\substack{k'=1\\k'\neq i,k'\neq k}}^{N} n_{ik'}\right) + \omega_{2} \sum_{i=1}^{N} \sum_{\substack{k=1\\k\neq i}}^{N} n_{ik}\left(\sum_{\substack{i'=1\\i'\neq i,i'\neq k}}^{N} n_{i'k}\right) + \omega_{3} \sum_{i=1}^{N} \sum_{\substack{k=1\\k\neq i}}^{N} n_{ik}\left(\sum_{\substack{i'=1\\i'\neq i,i'\neq k}}^{N} n_{i'i} + \sum_{\substack{k'=1\\k'\neq i,k'\neq k}}^{N} n_{kk'}\right) + \omega_{3} \sum_{i=1}^{N} \sum_{\substack{k=1\\k\neq i}}^{N} n_{ik}\left(\sum_{\substack{i'=1\\i'\neq i,i'\neq k}}^{N} n_{i'i} + \sum_{\substack{k'=1\\k'\neq i,k'\neq k}}^{N} n_{kk'}\right) + \omega_{3} \sum_{i=1}^{N} \sum_{\substack{k=1\\k\neq i}}^{N} n_{ik}\left(\sum_{\substack{i'=1\\i'\neq i,i'\neq k}}^{N} n_{i'i} + \sum_{\substack{k'=1\\k'\neq i}}^{N} n_{kk'}\right) + \omega_{3} \sum_{i=1}^{N} \sum_{\substack{k=1\\k\neq i}}^{N} n_{ik}\left(\sum_{\substack{i'=1\\k\neq i}}^{N} n_{i'i} + \sum_{\substack{k'=1\\k\neq i}}^{N} n_{kk'}\right) + \omega_{3} \sum_{i=1}^{N} \sum_{\substack{k=1\\k\neq i}}^{N} n_{ik}\left(\sum_{\substack{i'=1\\k\neq i}}^{N} n_{i'i} + \sum_{\substack{k'=1\\k\neq i}}^{N} n_{kk'}\right) + \omega_{3} \sum_{i=1}^{N} \sum_{\substack{k=1\\k\neq i}}^{N} n_{i'i} + \sum_{\substack{k'=1\\k\neq i}}^{N} n_{kk'}\right) + \omega_{3} \sum_{i=1}^{N} \sum_{\substack{k=1\\k\neq i}}^{N} n_{i'i} + \sum_{\substack{k'=1\\k\neq i}}^{N} n_{ki'} + \sum_{\substack{k'=1\\k\neq i}}^{N}$$

where $N_I = \sum_i \sum_{k \neq i} n_{ik}$.

Application:

FMR from Ross and Jain (2003)

Modality	au	$F\hat{M}R$	$\hat{\eta}$	$\hat{\omega_1}$	$\hat{\omega_2}$	$\hat{\omega_3}$	$\hat{\xi_1}$	$\hat{\xi_2}$	$\sqrt{\hat{V}[\hat{\pi_I}]}$
Hand	100	0.203	0.021	0.021	0.004	*0.000	*0.000	0.006	0.010
FP	20	0.060	0.005	0.0003	0.002	*0.000	0.019	0.014	0.003
Face	50	0.044	*0.000	0.001	0.004	*0.000	0.004	*0.000	0.003
au here is the threshold									

* indicates truncated correlation at zero

 $N_I = 12250$

Overdispersion here: 2.64, 1.25, 1.45 respectively relative to binomial

Application:

FNMR from Ross and Jain (2003)

Modality	au	\hat{FNMR}	$\hat{ ho}$	$\sqrt{\hat{V}[\hat{\pi}_G]}$
Hand	100	0.1120	0.0392	0.0164
FP	20	0.0760	*0.0000	0.0119
Face	50	0.0660	0.0086	0.0115

 τ here is the threshold

* indicates truncated correlation at zero

 $N_G = 500$

Overdispersion here: 1.16, 1.00, 1.04 respectively relative to binomial

Structure and Methods

Metric	Parametric model	Non-parametric model
FTE	Binomial	IID
FTA	Beta-binomial	User-specific Bootstrap
FNMR	Beta-binomial	User-specific Bootstrap
FMR	N/A	N/A

User-specific Bootstrap due to Poh et al 2007

FMR model generalization of implicit structure by Bickel

Central Limit Theorems apply to all cases.

Theoretical Formulation of Correlation

- Theoretical Formulation of Correlation
- All correlations are threshold dependent

- Theoretical Formulation of Correlation
- All correlations are threshold dependent
- Basis for More Complicated Correlation Structures

- Theoretical Formulation of Correlation
- All correlations are threshold dependent
- Basis for More Complicated Correlation Structures
- Appropriate Statistical CI's and Hypo Tests

- Theoretical Formulation of Correlation
- All correlations are threshold dependent
- Basis for More Complicated Correlation Structures
- Appropriate Statistical CI's and Hypo Tests
- Parametric approach used for Sample Size Calc's

- Theoretical Formulation of Correlation
- All correlations are threshold dependent
- Basis for More Complicated Correlation Structures
- Appropriate Statistical CI's and Hypo Tests
- Parametric approach used for Sample Size Calc's
- Needed for GLM's, Covariate approaches

- Theoretical Formulation of Correlation
- All correlations are threshold dependent
- Basis for More Complicated Correlation Structures
- Appropriate Statistical CI's and Hypo Tests
- Parametric approach used for Sample Size Calc's
- Needed for GLM's, Covariate approaches
- Mean Transaction Time??

Thank You

Questions?

schuckers@stlawu.edu