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Abstract

Testing of biometric devices to determine whether or not
their error rates meet a specified threshold is often an im-
portant criterion for determining whether or not a device
will be deployed. One consideration for this is how much
testing is to be completed. In this paper we apply sequen-
tial testing methodology to testing whether or not a biomet-
ric device has an error rate below a certain bound. This
approach has the advantage that the testing can be stopped
at any time. A decision can be made once there is enough
evidence to support or reject the hypothesis of interest. Ap-
plication is made to biometric error rate data for three dif-
ferent modalities - facial recognition, hand geometry and
fingerprints. Our results show that this approach can pro-
duce more efficient and less costly tests of biometric devices.

1. Introduction

One of the most common performance metrics for bio-
metric devices (BD’s) is their matching performance. This
is usually expressed as false match and false non-match
rates: FMR’s and FNMR’s respectively. These are simi-
lar though not identical to false accept and false reject rates:
FAR’s and FRR’s respectively. See Mansfield and Wayman
[5] for an explanation of the differences between these two
sets of statistical summaries. Another commonly used sum-
mary for these devices is the equal error rate or EER. Test-
ing a BD to determine if the observed error rates meet cer-
tain bounds on those rates is a common reason for device

testing. The traditional approach to testing is that a sam-
ple size is determineda priori and testing is done until that
sample size is met. In this paper we present alternative to
this that allows for the cessation of testing when there is
enough evidence to accurately do so. This is a common sta-
tistical problem in many areas including clinical trials. See,
e.g. [4]. The general approach we will take falls under a
group of statistical methods known as sequential analysis.
The goal of this paper is to describe this methodology for
making the testing of these device more efficient by allow-
ing the possibility of stopping the testing early.

For the statistical evaluation of BD’s and their error
rates, the primary focus of the work in this area has been
on confidence intervals and in some cases on sample size
calculations. Schuckers [10] proposed a confidence inter-
val based upon the Beta-binomial distribution. This work
on confidence intervals was extended by the same author
in Schuckers [9] to include two methods that didnot de-
pend on the Beta-binomial distribution. That work also in-
cluded sample size calculations. Several approximate meth-
ods have been proposed for sample size calculations. ”Dod-
dington’s Rule” [2] states that one should collect data until
there are30 errors. Likewise the ”Rule of 3” [5] is that
3/(the number of attempts) is an appropriate upper bound
for a 95% CI for the overall error rate when zero errors are
observed. However, both of these methods make use of the
binomial distribution which is often an unacceptable choice
for biometric data [12] because of the assumption of inde-
pendence between decisions. Recently, Dasset al [1] pro-
posed a simulation-based approximate method for calculat-
ing sample sizes for a confidence region around errors rates
on a receiver operating characteristic (ROC) curve. This
work is important in that it, like Schuckers [9], implicitly



utilizes a correlation structure. Thus, both of these meth-
ods imply that the assumptions of the binomial distribution
- specifically the assumption of independent trials - are not
appropriate for data from a BD. This is a direct consequence
of making multiple decisions from a single comparison pair.
In this paper we will build the work of Schuckers [9] be-
cause of the explicit nature of the sample size calculations
given there. To that end we will extend those calculations to
include statistical power calculations maintaining the corre-
lation structure between decisions(match/no match). It will
be these power calculations upon which we want our se-
quential methods to improve.

This article is organized in the following manner. Sec-
tion 2 lays out the process of testing and the mathematical
notation that will be used throughout. Sequential methodol-
ogy for more efficient testing and the sequential likelihood
ratio test are discussed in Section 3. The next section, Sec-
tion 4, discussion our application of this approach to non-
synthetic biometric decision data. Our conclusions and a
discussion of future work in this area can be found in Sec-
tion 5.

2. Testing Framework and Notation

Since our focus in this paper is error rate estimation, we
focus on errors in the matching process. To that end, we
begin by establishing the testing framework and the accom-
panying notation. We will begin by assuming that we are
testing an error rateδ and we would like to test whether or
not we can conclude thatδ < δ0 for some bound on the er-
ror rateγ0. For example, one possibility would be that we
want to certify a BD to have an error rate belowδ0 = 0.01.
Formally we are doing a statistical hypothesis test with

H0 : δ ≥ δ0

H1 : δ < δ0. (1)

We then decide whether to rejectH0 or to fail to rejectH0 in
traditional hypothesis testing. It is important to remind the
reader of the two relevant quantities: the level of a hypoth-
esis test,α, and the power of a hypothesis test,1 − β. See
[8] for more details. The level of a test,α, represents the
probability of a Type I error which isα = Pr(RejectH0 |
H0 is true). β is then the probability of a Type II errorβ =
Pr(Fail to rejectH0 | H0 is false) and the power of a hy-
pothesis test is1 − β which isPr(RejectH0 | H0 is false)
Note that these errors differ, in this context from matching
errors - false matches and false non-matches.

To estimateδ and subsequently make inference regard-
ing δ, we need to define the decision data that is involved
in its estimation. Assume first that through timet there are
nt comparison pairs to be tested. Since each matching de-
cision is based upon a comparison of images we will treat

each pair separately and build our correlation model around
these pairs. A comparison pair is a collection ofm

(t)
i com-

parisons collected from individuals wherei = 1, 2, . . . , nt

through timet. These comparisons can be either decision
data or dichotomized match score data. See Maet al [6] for
a detailed discussion of data categories for biometrics data.
For FMR data, the individuals in each comparison pair are
different; for FNMR data, the individuals are the same. Let

Yij =







1 if the jth decision from
theith comparison pair is an error,

0 otherwise.
(2)

We will refer to theYij ’s as decision data [6]. LetY(t) =
(Y11, . . . , Y1m

(t)
1

, . . . , Ynt1, . . . , Yntm
(t)
n

)T be the collection

of all observed decisions through timet. Let X
(t)
i =

∑m
(t)
i

i=1 Yij represent the total number of errors for theith

individual through timet. We propose the following ex-
plicit correlation structure for the decision dataY(t). That
structure is

Corr(Yij , Yi′j′) =







1 if i = i′, j = j′

ρ if i = i′, j 6= j′

0 otherwise.
(3)

Here ρ represents the correlation between different deci-
sions made on the same comparison pair. We will refer to it
as an intra-comparison correlation. This is the same quan-
tity that Schuckers [9] uses to model correlation; we have
just made the correlation structure for that model explicit.
Thus, we assume that decisions from the same comparison
pair are correlated but that decisions from different compar-
ison pairs are uncorrelated. For the sequential testing we
describe below, we will consider the data observed through
time t. Thus,nt will be the total number of observed com-
parison pairs through timet and Yt will be collection of
observed decisions through timet.

3. Sequential Methodology

Sequential statistical methods were first developed dur-
ing World War I by Abraham Wald [11]. There have been
numerous advances subsequently in this area. (The inter-
ested reader is directed to Ghosh and Sen [3] for more recent
work.) Sequential methodology differs from the traditional
statistical hypothesis testing framework to allow for three
possible conclusions at any point in data collection rather
than the traditional two conclusion (reject/fail to reject) for-
mat. Under sequential methodology at timet, conclusions
are made to either

1. AcceptH0,

2. AcceptH1,



3. Continue testing.

The first two outcomes indicate that enough data has been
collected to make a statistically sound decision. This last
outcome is an indication that not enough evidence has ac-
cumulated to produce an informed decision. The basis for
these decisions is the likelihood function.

The sequential probability ratio test (SPRT) approach
that we will use is based on a simple vs. simple hypoth-
esis test. For example, for testing a parameterδ we would
testH0 : δ = δ0 vs. H1 : δ = δ1 whereδ1 < δ0 is chosen
to be an acceptable value for the conclusion you would like
to draw. The goal here is to rejectH0 if the BD meets the
requirement of a sufficiently small error rate. In the case
of testing for error rates, we would chooseδ1 < δ0 at a
value that is acceptable for the purposes of testing. For
example, in biometric testing we might choose a value of
δ1 = 0.025 < δ0 = 0.05. By selectingδ1 = 0.025 we
are saying that an error rate of0.025 would be acceptably
below our bound ofδ = 0.05 so that we could confidently
conclude that the error rate is below our bound. Having se-
lectedδ0, δ1, we must also choose values for the level of the
test,α, and the power of the test,1− β. The test at timet is
then

LRt =
L(δ0, ρ̂0 | Yt)

L(δ1, ρ̂1 | Yt)
(4)

where andL(δ, ρ | Yt) is the likelihood function and
ρ̂ is the maximum likelihood estimate based onρ̂i =
arg maxρ L(δi, ρ). For decision data from BD’s, we will
follow Schuckers [9] who showed that the Beta-binomial
distribution was a reasonable fit to both FMR and FNMR
decision data. The likelihood is then

L(δ, ρ | Yt) =

n
∏

i=1

{

(

m
(t)
i

X
(t)
i

)

Γ((1 − ρ)ρ−1)

Γ(δ(1 − ρ)ρ−1)

×
Γ(δ(1 − ρ)ρ−1 + X

(t)
i )

Γ((1 − δ)(1 − ρ)ρ−1)

×
Γ((1 − δ)(1 − ρ)ρ−1 + m

(t)
i − X

(t)
i )

Γ((1 − ρ)ρ−1 + m
(t)
i )

}

Under the logic of the SPRT, we will reject ifLR is small
enough and we will accept ifLR is large enough. Following
Wald [11], at timet the following decisions are made:

1. AcceptH0 if LR > B,

2. AcceptH1 if LR < A, and

3. Continue collecting data ifA < LR < B

whereA = (1 − β)/α andB = β/(1 − α) with P (Accept
H0 | δ = δ1) = β andP (RejectH0 | δ = δ0) = α. A
and B are derived from Wald’s original formulation of the

SPRT. Alternatively since the natural logarithm is a mono-
tone function, we can decide based onln(A) and ln(B)
against

ln(A) < ℓ(γ0, ρ̂) − ℓ(γ1, ρ̂) < ln(B). (5)

whereℓ(γ, ρ) = ln(L(γ, ρ)). Since our focus is on the er-
ror rate,δ, we will considerρ a nuisance variable. As stated
above the motivation for this work is to expedite decision
making regarding a BD’s error rate. In the next section we
evaluate whether or not the proposed procedure meets these
claims.

4. Application of Sequential Methods to BD
data

In this section we apply the above methods to BD data,
both synthetic and real. We will begin by applying this
methodology to data from three different biometric modal-
ities. This data was collected by Ross and Jain [7] and
includes data from facial recognition, hand geometry and
fingerprint BD’s. We will consider both FNMR and FMR
sequential testing for this data. For all of these modalities
we will treat the data as collected over time as one would
do in a sequential testing situation.

For their paper on multibiometrics Ross and Jain [7] col-
lected data from 50 individuals from three biometric modal-
ities – face, fingerprint and hand geometry – and recorded
the match scores for ten comparisons for each within indi-
vidual comparison pair of50 individuals and for five com-
parisons for each between individual comparison pair com-
posed of crosscomparing those same50 individuals. Note
that the between individual cross comparisons here are not
symmetric and thus there were49×50 = 2450 comparison
pairs in the sense we are using here. Thus there are500 de-
cisions to compare an individual to themselves and12250
decisions comparing one individual to another. To simulate
sequential testing at each timet we sampled with replace-
ment from among the comparison pairs. Data for FMR and
FNMR were generated and tested separately. We contin-
ued this process until the SPRT decision rule indicated that
enough information had been gathered to make a decision.

To evaluate how well the sequential decision making
methodology performed, we considered several hypothesis
tests for each modality and each type of error: false match
and false non-match. We found thresholds for each device
that yielded error rates – both FMR and FNMR – close to
the traditional values of0.10, 0.05 and0.01. We then con-
sidered SPRT’s around this data. In particular, we were in-
terested in the Type I and Type II error rates that the SPRT
achieved compared to the nominal levels ofα = 0.05 and
β = 0.10. The hypothesized alternative forδ was chosen
to beδ1 = 1

2δ0. For each combination of parameters we
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Figure 1.

sampled (with replacement) a comparison pair and the cor-
responding decisions until there was enough information to
stop the test. That is, after each ’new’ set of data is added
we reran the SPRT to determine if stopping was appropri-
ate based on the test. We recorded the number of compar-
ison pairs added until the test was complete and we will
refer to this as the stopping times. For each hypothesis test
and each modality we replicated the SPRT 1000 times, each
time generating different dataYt, to gain an understanding
of the distribution of stopping times for each test. Figure 1
illustrates graphically this process for three separate simula-
tions. The dashed horizontal lines represent the boundaries
at which the SPRT will conclude that enough data has been
collected to make a statistically appropriate conclusion.

Tables 1, 2 and 3 contain the results of the simulations.
In these tables, the ’true error rate’ is the error rate for the
full data from each modality and ’ρ’ is the intra-class corre-
lation for that same data.n∗ is the fixed sample size power
calculation for determining the number of comparison pairs
to sample with a one-sided alternative hypothesis. That cal-
culation is

n∗ =
⌈

m−1(δ0 − δ1)
−2

×
(

z1−α

√

δ0(1 − δ0)(1 + ρ(m − 1))

+ z1−β

√

δ1(1 − δ1)(1 + ρ(m − 1))
)2

⌉

(6)

where⌈•⌉ represent the ’ceiling’ function andzk is thekth

percentile of a standard normal distribution. We use the es-
timates ofδ andρ calculated from the data for calculating
n∗. np in the tables of results represents the100 ∗ pth per-
centile from the distribution of stopping times.

Overall these tables show that the SPRT performs ex-
tremely well. When the correct decision isH0, we should
expect an error rate ofα = 5%. With one exception, the
’% incorrect decisions’ are within2% of the nominal level.
In that case, the percentage was much lower than would be
anticipated. We should expect the ’% incorrect decisions’
when the correct decision is toH1 to beβ = 10%. The
’% incorrect decisions’ for these decisions exhibits far more
variability than the Type I error rate,α, simulations. Most
of these percentages are either around the nominal level,
10%, or below. Only one of these error rates is signif-
icantly higher than that value: FNMR for Hand Geome-
try, H0 : δ = 0.200. Moving to the stopping times, the
percentiles of the distribution for each combination of pa-
rameters suggests that the SPRT does better than the fixed
sample size,n∗. The fixed sample size falls above the75th

percentile for all but one of the simulations. Thus, we can
conclude that with probability greater than 75% the SPRT
will result in fewer comparison pairs collected than the tra-
ditional testing approach. In most cases the fixed sample
size,n∗ falls between the75th and97.5th percentiles for
the distribution of stopping times. Because of the stochas-
tic nature of the sequential approach, it is possible that the
stopping time will be larger than the fixed sample size. If
we comparen∗ to the median of the stopping times,n0.50

then we see that median savings due to using the SPRT is
significant. On average, the ratio of median stopping times
to fixed sample size is approximately0.495. Thus the typi-
cal savings from using the SPRT rather than the traditional
sample size approach is50%. This is a significant amount
given the cost of testing of a device.



5. Conclusions

In this paper we have presented an alternative method
for testing whether or not a BD meets a specific bound for
its error rate. This approach is based upon the sequential
probability ratio test developed by Wald [11]. Traditionally
biometric testing has been done by fixing the number of in-
dividuals to be tested and collecting data until that number
has been reached. The sequential alternative allows a de-
termination about the fitness of a device’s matching perfor-
manceearly, while data is being collected. This can allow
testing to be stopped earlier and has the potential to resultin
larger savings both in time and money. In particular, we find
that for the three datasets that we observed in this paper, the
savings one could expect from this are in the neighborhood
of 25-50%. This is a significant improvement over the fixed
sample size approach. These results are consistent across
all three of the modalities tested here. To confirm and ex-
tend on these results we need to further study several issues.
First, the impact of choosing different values forδ1. In this
study we limited ourselves toδ1 = 1

2δ0. Other values need
to be considered to assess the robustness of the results here.
Next, we want to explore other values forα andβ to look
at their impact sequential testing. Another area of interest is
other error rates beyond the0.10, 0.05 and0.01 tested here.
In particular, there is interest in being able to test valuesof δ
that are orders of magnitude smaller than those tested here.
Finally, we would like to consider a hybrid testing approach
that would involve sequential testing until the fixed sample
size is achieved. This would guarantee a worst case sample
size but it will also likely have implications for the Type I
and Type II error rates. These issues are worthy of further
study. We are confident that the changes to application will
not alter the overall conclusions we have described above.
It is possible to improve biometric testing by stopping the
testing when enough (data) is enough (to make valid infer-
ence).
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Table 1. Facial Recognition Sequential Testing of H0 : δ = δ0 vs H1 : δ < δ0, α = 0.05, β = 0.10

Error True Correct % incorrect
Type δ0 δ1 error rate ρ decision n∗ n0.50 n0.75 n0.975 decisions
FMR 0.100 0.050 0.0984 0.0000 H0 48 18 31 81 0.042
FMR 0.050 0.025 0.0510 0.0000 H0 100 32 57 144 0.030
FMR 0.010 0.005 0.0098 0.0000 H0 517 186 321 742 0.049
FMR 0.200 0.100 0.0984 0.0000 H1 22 16 23 44 0.065
FMR 0.100 0.050 0.0510 0.0000 H1 48 31 43 92 0.108
FMR 0.020 0.010 0.0098 0.0000 H1 257 128 197 394 0.068

FNMR 0.100 0.050 0.1000 0.0000 H0 24 10 18 39 0.030
FNMR 0.050 0.025 0.0500 0.0290 H0 63 17 31 78 0.029
FNMR 0.010 0.005 0.0100 0.0000 H0 259 90 159 371 0.044
FNMR 0.200 0.100 0.1000 0.0000 H1 11 11 14 26 0.039
FNMR 0.100 0.050 0.0500 0.0290 H1 31 16 24 47 0.095
FNMR 0.020 0.010 0.0100 0.0000 H1 129 72 106 210 0.072

Table 2. Hand Geometry Sequential Testing of H0 : δ = δ0 vs H1 : δ < δ0, α = 0.05, β = 0.10

Error True Correct % incorrect
Type δ0 δ1 error rate ρ decision n∗ n0.50 n0.75 n0.975 decisions
FMR 0.100 0.050 0.1025 0.0321 H0 54 17 29 75 0.031
FMR 0.050 0.025 0.0504 0.0091 H0 104 32 55 140 0.035
FMR 0.010 0.005 0.0099 0.0000 H0 517 175 315 768 0.061
FMR 0.200 0.100 0.1025 0.0321 H1 25 16 22 45 0.157
FMR 0.100 0.050 0.0504 0.0091 H1 50 29 43 84 0.092
FMR 0.020 0.010 0.0099 0.0000 H1 257 128 197 405 0.067

FNMR 0.100 0.050 0.1020 0.0514 H0 35 10 17 38 0.052
FNMR 0.050 0.025 0.0500 0.0222 H0 60 17 33 91 0.049
FNMR 0.010 0.005 0.0100 0.0000 H0 259 89 149 425 0.035
FNMR 0.200 0.100 0.1020 0.0514 H1 16 11 15 31 0.125
FNMR 0.100 0.050 0.0500 0.0222 H1 29 18 26 61 0.083
FNMR 0.020 0.010 0.0100 0.0000 H1 129 72 106 231 0.064

Table 3. Fingerprint Sequential Testing of H0 : δ = δ0 vs H1 : δ < δ0, α = 0.05, β = 0.10

Error True Correct % incorrect
Type δ0 δ1 error rate ρ decision n∗ n0.50 n0.75 n0.975 decisions
FMR 0.100 0.050 0.0991 0.0142 H0 51 17 30 76 0.032
FMR 0.050 0.025 0.0496 0.0000 H0 100 35 62 160 0.042
FMR 0.010 0.005 0.0102 0.0000 H0 517 176 309 793 0.036
FMR 0.200 0.100 0.0991 0.0142 H1 23 16 22 44 0.096
FMR 0.100 0.050 0.0496 0.0000 H1 48 29 41 92 0.079
FMR 0.020 0.010 0.0102 0.0000 H1 257 142 211 433 0.077

FNMR 0.100 0.050 0.1000 0.0000 H0 24 11 19 39 0.016
FNMR 0.050 0.025 0.0520 0.0000 H0 50 17 30 69 0.031
FNMR 0.010 0.005 0.0100 0.0000 H0 259 90 162 372 0.038
FNMR 0.200 0.100 0.1000 0.0000 H1 11 11 14 24 0.011
FNMR 0.100 0.050 0.0520 0.0000 H1 24 18 25 50 0.082
FNMR 0.020 0.010 0.0100 0.0000 H1 129 72 106 225 0.058


