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ABSTRACT 4. Matching,(Yix.ix)

Measurementand evaluation of biometric device performanc 5. Decision,(D;y. i ).

is critical to end users and consumers of these devicesisin th ) ) o
paper we present explicit theoretical correlation modéismnv (We_ will assume here a -1 matching process but it is
the biometric matching process is stationary that can be usétraightforward to generalize the work herelte- n match-
to derive variance estimates of biometric performance metNd-) The first step in this process is the enroliment of indi-
rics. We focus in this paper on the failure to enroll, theufesl ~ Viduals. As part of the enroliment we measure whether or
to acquire, the false match rate and the false non-match ra@ot thei*" individual is capable of enrolling. We call this

We further present unified notation that makes our corxati binary random variablé; for i € £ where¢ is the set of all
frameworks possible. individuals who attempt to enroll andg is the number of

o ] ) individuals who attempted to enroll.
Index Terms— Statistics, Covariance matrices, Image

Classification, Moment methods, Random Variables gl if individual 7 is unable to enroll 1)
10 otherwise
1. INTRODUCTION AND NOTATION Then the failure to enroll (FTE) rate is
An understanding of how a biometric device performs is es- Yice Bi
sential for decisions regarding Many methods for carrying FTE= ng 2)

out an evaluation of a biometric identification have been pro ] -
posed. All of these evaluations utilize general statistiveth- It is certainly the case that additional measurements dre co

ods and, in particular, statistical methods that estimate v !ected, e.g. biometric samples and templates, as part of the
ances. The evaluation of the performance of a biometric de2nroliment process. We will discuss these below as part of
vice is a critical tool for users and decision makers. Thigwo the matching process. _ o _
builds on previous attempts to describe the biometric goce | N€ second step in the process is the acquisition of images
mathematically by Mansfield and Wayman [1] and Btaal I no_n-.e.nrollment attempts. Slnce. itis .p053|ble for mudtip
[2]. We extend those works to give explicit (and appropjiate &cquisition attempts to occur per individual, we u$g to
correlation structures that allow for the calculation afizace ~ denote thej*” binary outcome of the acquisition attempt by
estimates of the typical biometrics performance metrics. the i*" individual wherei ¢ Aandj = 1,...,a;. We will

The biometric matching process can be thought of in th@SSUmed;; is an indicator of failure to acquire. Then
following steps with accompanying notation:

1 if the j** acquisition attempt by
1. Enroliment(E;) Aij = . int;llividL_JaIi is not acquired (3)
otherwise

2. Acquisition,(A;;)

Thus,a; is the total number of attempts for thé& individual
3. Feature ExtractionSix, Xix) and A represents all individuals who attempt to have their
biometric image collected. Then the failure to acquire (FTA
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We next move to the biometric sample that is collectedsimply note here that a proportion is an averag@&oand1’s.
We will denote biometric samples I8y, where we are only Clearly then FTE, FTA, FMR and FNMR are averages. Any
interested in samples taken whdr, = 0. From each sam- discussion or estimation of these quantities utilizegstieal
ple, S;;, image processing is done and features are extractethethods for linear combinations. Lettidg,, v = 1,...,V
Since it is nearly always the case that multiple features arbe a random variable and lef’s be known constants. Then
extracted we denote the features that are extracted difthe R* = Zle a, Ry is our linear combination of interest. Note
successful acquisition for th&" individual by X;;,. Having thatifa, = V~! thenR* is an average. We note that the first
extracted these features, biometric systems then comgare f two moments ofR* are
tures extracted to those taken during the enrollment psoces

This matching process yields a match score for each pair of B[R] = XV: a4y E[R,] @)
images. Thus, we need to denote these score¥;py;. =

which is the match score for a comparison of #ié image and

collected on the'" individual to thek’*" collected image for v v

thei'*" individual. This notation allows for consideration of VIR*] = Z Z y Cov(Ry, Ry)

both genuinei= i’) and imposteri+# i") match scores with o—1 w1

a single notation. The imposter and genuine score distribu- v

tions are build by combining these comparison scores when = Z a’V[R,]

1 # i’ and when = i’ respectively. v=1

The final step of the matching process is the decision vV Vv
whether to accept or reject an individual based upon their + 22 Z Ay @y Cov(Ry, Ry) (9)
presented biometric. Without loss of generality we can say v=1 w>v

that we will reject a given decision if;; ;-5 is above some
thresholdy. We letD;;/, be a binary decision based upon the
match scor€; ;. D;ir¢ Will be a binary decision for the
¢t decision from comparing images from individuands’.
We use this notation since it is more general and simpler th
the notation for the match scores. Note thatihe, will be

Here we have used the standard notation tBat], V| ],

Cou( , ) represent the expectation, variance and covariance,

respectively.

a If we can assume that the process mean is constant, i.e.
E‘[RU] = ug, then Equation 8 becomes

1 if a mistake is made in matching afidotherwise. More v
formally let E[R*| = ur <Z av> . (10)
Lt i=d Yigar > 7 o
0 if i=i Y <7 If we can further assume that the variances for the process
Ditt =90 0 it it Yipwp > 7 (5)  described by the random variables are equé[R,] = o2
1if i, Yik:i/k/ <7 then we can rewrite Equation 9 as

vV v
12% + 2 Z Z avawU%Corr(Rv, Ry). (12)

v=1w>v

The false match rate (FMR) and the false non-match rate i 9
(FNMR) are then —~ R

20 2irpi 2o Dive (6) Here we denot&orr(,) as the correlation of two random
D2 D g M variables. Note that the assumption of constant mean and
variance is often referred to as wide-sense stationaritg gV
.3, Di or covariance stationarity. One concern that is raised @bou
FNMR = = —=F——, (7)  the assumption of WSS for biometric classification is the is-
2 M sue of the biometric menagerie or biometric zoo first prodose
respectively. In the above equationsy represents the num- by Doddingtoret al[3]. There has been much work in recent
ber of comparisons made between individuaadi’ andn;;  years on the issue of a biometric menagerie and whether or
is the number of comparisons made between individaald  not it truly exists. For example, see [4], [5], [6], or [7] for

themselves. If = i’ then the comparisons are genuine and ifrecent works in this area. Setting aside the issue of the exis

FMR =

and

i # i’ then the comparisons are imposter. tence of the menagerie, it is possible to maintain a biometri
process whose mean and variance are constant but woose
2. STATISTICAL BACKGROUND relation structure can accommodate the menagerie. We will
present such structures below.
All of the statistical methods used to evaluate classificati We motivated the above derivations by pointing out the

and matching performance - FTE, FTA, FMR, FNMR - areneed for understanding variances of linear combinations.
all averages and, therefore, they are linear combinat\dfes. There are two other important reasons for focusing on the



correlation and the covariance structure. The first of thesancorrelated. Mathematically, we write.
is the need to consider asymptotic behavior of random vari-

ables and their linear combinations. We note that centrdt li Lot =i =7
theorems are most often associated with averages; however, Corr(Ai;, Ayy) =q & it i=i'j#j (13)
central limit theory is more generally applicable to linear 0 otherwise

combinations. See, for example, Jacod and Shiryaev [8],

for additional results in this area. The second reason fer thin this case) measures the degree of similarity that exists be-
importance of the correlation structure is the need for appr ftween acquisition decisions of the same individual. It izof
priate resampling methods. Several resampling methods hateferred to as the intra-individual or intra-class cortiela

been proposed in the biometrics literature including Betle

al [9] and Pohet al[10]. 3.3. FNMR Correlation

FNMR has a structure that is similar to FTA because only a
3. BIOMETRIC CORRELATION STRUCTURES single individual is involved though there are potentiailly

merous decisions based upon that individual. The correla-
In this section we present correlations for the performanceon structure we propose explicitly here has been fornedlat
metrics of FTE, FTA, FMR and FNMR. As mentioned in the implicitly by at least two authors Poét al [10] — the user-
previous section, understanding of correlation is cruciah-  specific bootstrap — and Schuckers [11] — the beta-binomial
derstanding of variability estimates and, hence, staéistn-  approach. The correlation structure for the false non-matc
ference. Many of the commonly used statistical tools - sameecisions, thé;;,’s, is
ple size calculations, confidence intervals, generalizeshf

models - that are potentially available to biometrics regui 1 ?f i=il=1
the ability to articulate the variance structure of a lineam- Corr(Diig, Do) = p if i=d0F# (14)
binations. It is important to remember here that these tamrre 0 otherwise

tion structures depend on WSS being constant for the process
under consideration. In addition, we note that the corimtat FOr this correlationp is a measure of how similar each indi-
here yield variability beyond that already due to independe Vidualis to themselves.
events. We begin here with the correlation for FTE. This cor-
relation structure is straightforward since only indivédsiare 3 4. EMR Correlation
involved.
False match rate correlation is necessarily the most cempli
cated because each decision involves two individuals argl th
3.1. FTE Correlation the correlation depends on four individuals. Notationally

. . . . tryto group possible correlations. Belowepresents the cor-
Above we introduced the notation for FTE's. Since a single ytogroupp . P .
Ry L . relation between two comparisons made on the same pair of
individual is involved in each enroliment attempt and foclea

individual there is only a single enrollment decision, we ca individuals. Thew's represent the case where one individ-
nly gie € ' ual from each pair is shared and tfie represent the correla-
assume that there is no correlation between enrollment dec;[l L . .
. T ion between individuals when the order is asymmetric. éf th
sions. Formally this is . . . T .
matcher is symmetric then this model will simplify to simply

n and thev's. The degree to which someone is a goat or sheep

(12) is measured by the's. The the correlation structure for the

imposter decisions, thB;; ,'s wherei # i’ is given by

1 if i=7¢

Corr(E;, Ey) = { 0 otherwise

The implications from this correlation structure is that tb-

- 1 if i=ki =k 0=V
served enrollment decisions are uncorrelated and, thus, we if = ki =k O£
can use methods based upon independence for appropriate in- :]1 i = k’ i+ k’7
ference. wo it i =k,i#k

CO’I’T(D“'/g, Dkk/g/) = w3 if = k/,i 75 k
3.2. FTA Correlation wy i it =k i Ak
& if i=kK i =kt=0
The correlation structure for FTA is necessarily more campl & If i=k i =k (£
cated since multiple attempts are possible for each indalid 0 otherwise
We will assume here that acquisition attempts will be corre- (15)

lated if they involve the same individual. If differentinitlu-  The correlation described above is a complex and sophisti-
als are involved then we assume that acquisition attempts acated one. A similar sort of correlation structure was first



proposed by Bickel [12]. Our correlation structure general
izes Bickel's approach. It also important to note that resam
pling or nonparametric methods currently in use are not suf-
ficient to accurately assess the variability in the FMR based
upon this . [

4. DISCUSSION

An understanding of correlation structure is necessargfer  [7]
propriate use of statistical methods. The evaluation of bio
metric identification performance depends on these statist
methods. This paper has proposed explicit correlatiortstru
tures to further statistical research on biometric devaréqr-

the frgc 2.0 color image corpus,” P006 Conference
on Computer Vision and Pattern Recognition Workshop
(CVPRW’06) 2006.

6] Norman Poh, Samy Bengio, and Arun Ross, “Revis-

iting doddingtons zoo: A systematic method to assess
user-dependent variabilities,” IDIAPRR 06-04, IDIAP
Research Institute, , 2006, .

Neil Yager and Ted Dunstone, “Worms, chameleons,
phantoms and doves: New additions to the biometric
menagerie,” irR007 IEEE Workshop on Automatic Iden-
tification Advanced Technologies (AutolD’'02p07.

mance. The metrics for which we have proposed a correlation8] Jean Jacod and Albert N. Shiryaevmit Theorems for

structure ar e the failure to enroll, the failure to acquihe

false match rate and the false non-match rate. The correla 9]
tion structures here are dependent upon each process having
constant mean and variance. Changes in the process can be
modelled by a generalization of the methods considered here
Itis hoped that the correlation frameworks described hélte w
lead to the development of improved statistical methods noj10]
that these correlations have been implicitly describeghan
ticular, the use of statistical theory for linear combinas
should lead to the development of appropriate variance esti
mates of biometric performance metrics. Finally we noté tha
these correlations allow for the possibility of the bionetr
menagerie. (11]
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