Guidelines for Appropriate Use of Simulated Data from Bio-authentication Research ^{ab}

Yan Ma¹, Michael E. Schuckers², Bojan Cukic¹

¹ West Virginia University

 2 St. Lawrence University and

the Center for Identification Technology Research (CITeR)

AutoID 2005

^aNSF grant CNS-0325640 which is cooperative funded by the National Science Foundation and the United States Department of Homeland Security ^bAdditional funding from Center for Identification Technology Research

Outline

- 1. Introduction to Simulation
- 2. Taxonomy of Data
- 3. Guidelines
- 4. Illustrations

Simulation

Current Debate:

One side: Simulation is very, very bad.

Other side: Simulation is very, very good.

This talk: We offer a third way.

Simulation can be good but . . . under what conditions?

Taxonomy

If we want to simulate data, what data?

- Images
- Features
- Match/Similarity Scores
- Decisions

Taxonomy of Biometric Data

- Image data Collection of image E.g. raw 'picture' of biometric image
- Feature data Measurements of features E.g. Iris Densities, FP minutiae, intra-pupil distance
- Match Score data Distance metric
 E.g. Match Scores, Normalized scores, Hamming distance, Multi-modal
- **Decision data** Binary Decision Accept or Reject, Allow or Deny Access

Notation

Let $\mathbf{X} \sim F(\mathbf{X} \mid \boldsymbol{\theta})$ represent the cdf of our simulation model where \mathbf{X} is a RV representing the data and

 $\boldsymbol{\theta}$ represents the parameters of the simulation

model

Let $\hat{F}(\mathbf{x} \mid \hat{\boldsymbol{\theta}})$ represent the estimated cdf where \mathbf{x} is the realized data and

 $\hat{\boldsymbol{\theta}}$ represents estimates of $\boldsymbol{\theta}$ using the data, **x**.

Guidelines

Three criteria for simulation

- 1. Flexibility
- 2. Parsimonious
- 3. Goodness-of-Fit

Flexibility and Parsimony

Simulation needs

- Random generation via cdf say $F(\mathbf{X} \mid \boldsymbol{\theta})$
- Enough parameters to capture data complexity

But ...

• Simple as need be

Goodness-of-fit

Idea: Is $\hat{F}(\mathbf{x} \mid \hat{\boldsymbol{\theta}})$ similar to $F(\mathbf{X} \mid \boldsymbol{\theta})$?

Examples

Kolmogorov-Smirnov

Anderson-Darling

QQ-plot

Garren et al. (2001)

Illustrations

Data: Genuine Facial Matching Scores

Source: Michigan State University, Ross and Jain (2003)

Model: $X \sim log - normal(\mu, \sigma)$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma x}} e^{-\frac{(\log x - \mu)^2}{2\sigma^2}}, x \in (-\infty, \infty)$$
(1)

Estimation via MLE

Illustrations

Data: Imposter Facial Matching Scores

Source: Michigan State University, Ross and Jain (2003)

Model: $X \sim Weibull(\alpha, \beta)$

$$f(x) = \frac{\alpha}{\beta} \left(\frac{x}{\beta}\right)^{\alpha - 1} e^{-\left(\frac{x}{\beta}\right)^{\alpha}} \tag{2}$$

Estimation via MLE

Histogram of facial image match scores

(a). Genuine matching scores (b). Imposter matching scores.

Illustrations

Data: Genuine/Imposter Face, Finger, Hand Geometry Matching Scores

Source: Michigan State University, Ross and Jain (2003)

Model: Various Models (see next slide) Estimation via MLE

Kolmogorov Goodness-of-Fit Tests

Modality		
Population	Fitted Distribution <i>p</i> -val	
Face		
Genuine	Log-Normal	0.3030
Imposter	Weibull	0.1800
Hand Geometry		
Genuine	Gamma	0.1640
Imposter	Log-Normal	0.8830
Fingerprint		
Genuine (transformed)	Gamma	0.6960
Imposter	Truncated Mixture Normal	0.2010

Empirical CDF and theoretical CDF

(a). Face genuine (b). Hand geometry genuine (c). Fingerprint genuine(d). Face imposter (e). Hand geometry imposter (f). Fingerprint imposter

Decision Data

Schuckers (2003) used Beta-binomial to model Decision Data

Data: Face, Fingerprint, Hand geometry Decision data

Source: Michigan State University, Ross and Jain (2003)

Model: $X \sim Betabin(m, \pi, \rho)$

Goodness-of-fit Hand Geometry FMR

Threshold	$\hat{\pi}$	p-value
80	0.1136	0.0017
70	0.0637	0.1292
60	0.0272	0.6945
50	0.0098	0.9998
40	0.0016	0.9972
30	0.0008	0.9996

Goodness-of-fit Facial FNMR

Threshold	$\hat{\pi}$	p-value
45	0.1060	0.2614
50	0.0660	0.9509
55	0.0540	0.5353
60	0.0500	0.5885
65	0.0300	0.9216
70	0.0180	0.9067
75	0.0140	0.9067
80	0.0060	0.9985
85	0.0040	0.9996
90	0.0040	0.9996
95	0.0040	0.9996
100	0.0040	0.9996
105	0.0020	1.0000

Summary

- Third approach to use of simulation: model but verify
- Guidelines: Flexible, parsimonious, consistent
- Taxonomy of data
- Illustrated methods

Thank You

schuckers@stlawu.edu