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1. INTRODUCTION

Reciprocals play a significant role in Mesopotamian mathematics since divi-
sion is performed as ‘multiplication by the reciprocal’. An important skill for a
Mesopotamian scribe was the ability to find reciprocals, and there are a number
of algorithms for achieving this. The product of a number and its reciprocal is 1.
For any number n, we let m denote the reciprocal. Then nn = 1. In Mesopotamia,
the notion of the ‘reciprocal’ only appears after the introduction of the abstract
sexagesimal system, which utilizes a relative place value. No absolute scale of the
numbers is indicated and so, in effect, we treat as a number and its reciprocal any
pair of numbers whose product is a power of 60, and hence denoted by 1 in the
sexagesimal system. For example, the reciprocal of 2 is 30 because 2 -30 = 1 in
sexagesimal notation. Similarly, the reciprocal of 4 is 15. The closest analogy in
modern life is with minutes and hours: half an hour is 30 minutes and a quarter
of an hour is 15 minutes. It is often helpful to think of 30 as a half, 20 as a third,
15 as a quarter, and so on. In fact, there is evidence from early examples of recip-
rocal tables from the Ur III period that these pairs were thought of as factors of
60. It would be better to think of the pairs as multiplicative inverses rather than
reciprocals, but the terminology is entrenched.

2. RECIPROCALS AND THE STANDARD TABLE

A sexagesimal number has a (finite) reciprocal if and only if its only prime
divisors are 2, 3 and 5, the divisors of the base, 60. These are the so-called ‘regular’
numbers. This property holds for any base. For instance, in base 10, the prime
divisors are 2 and 5, so 2 has a finite decimal reciprocal % = 0.5, and so does 5, where
% = 0.2, but 3 does not. We cannot write % as a finite decimal. Since 60 has many
more divisors than 10, there are many (small) regular numbers. For easy reference
these were collected into a standard table, of which we have many surviving copies.
The standard table contains reciprocal pairs for all regular numbers from 2 to
1,21 = 81 = 92 (see Table 1)

Note that reciprocals come in pairs. The reciprocal of 2 is 30 and the reciprocal
of 30 is 2. In terms of our notation, this means that (72) = n. Hence, one can (and
should) use the table in both directions, reading from left to right and from right
to left.

The table is not difficult to construct starting with the basic pairs 2 ~ 30, 3 ~ 20,
5 ~ 12 and using a simple doubling and halving procedure, along with a couple

of extra arguments. For example, from 2 ~ 30, by doubling the first number and
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n ni|n n n n
2 30 | 16 3,45 45 1,20
3 2018 3,20 | 48 1,15
4 15| 20 3 50 1,12
5 12 | 24 2,30 54 1,6,40
6 10 | 25 2,24 1 1
8 7,30 | 27 2,13,20 1,4 56,15
9 6,40 | 30 211,12 50
10 6|32 1,52,30| 1,15 48
12 5| 36 1,40 | 1,20 45
15 4140 1,30 | 1,21 44,26,40

TABLE 1. The standard table of reciprocals

halving the other, we get 4 ~ 15, then 8 ~ 7,30 (thinking of this as 7 and a half),
16 ~ 3,45, giving 32 ~ 1,52,30 and 1,4 ~ 56,15. Starting from 3 ~ 20, the
same process gives us the pairs 6 ~ 10, then 12 ~ 5, and 24 ~ 2,30 ending with
48 ~ 1,15. Similarly, from the 5 ~ 12 pair, we get 10 ~ 6, and 20 ~ 3, then
40 ~ 1,30 and 1,20 ~ 45. Since 9 is 32, the reciprocal of 9 is the square of the
reciprocal of 3, or 202 = 6,40. Then 18 ~ 3,20, so 36 ~ 1,40 and 1,12 ~ 50.
Similarly, 25 = 52 ~ 122 = 2,24, and so 50 ~ 1,12, which we already knew and
could have used to find 25 ~ 2, 24. Finally, from 9 ~ 6,40, we obtain 27 ~ 2,13, 20,
then 54 ~ 1,6,40, and 1,21 ~ 44,26,40. The last flourish is to put 1 ~ 1. The
table is complete.

In Old Babylonian mathematics problems, most reciprocals that are needed are
ones from the standard table. However, some times a student needed to find the
reciprocal of a regular number not in the table, and for this situation, standard
algorithms were developed.

3. A SIMPLE ALGORITHM FOR THE RECIPROCAL

A calculation using the following algorithm appears on a tablet from Ur, pub-
lished as UET 6/2 295. The calculations were decoded by Friberg [1].

The algorithm works as follows. We are given a number n and want to find its
reciprocal . The procedure is to view n as composed of two parts, n = a+b, where
the tail, b, is a number in the standard table. Hence, its reciprocal, b, is known.
Multiply n and b to form the product nb. For the algorithm to work, this product
must also be a number in the standard table. Then its reciprocal is

(nb) = mib = mb.

Finally, multiplying by b removes the unwanted factor, mbb = 7, leaving the desired
reciprocal. The crucial point in the algorithm is that n must have a regular tail b
such that nb is in the table. The example used in UET 6/2 295 is n = 2,5, one of
the most common numbers used for these algorithms, split into a head a = 2 and
tail b = 5. The notation used in Table 2 is D; is the input data, and Rj denotes
the result of the kth step of the algorithm.

Using the data from UET 6/2 295, we have D; = 2,5, and the calculations are
as follows.
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Computation Symbolic Instruction
Step 1 Split off tail: 5 Ry = tail(Dy)
Step 2 Reciprocal of 5: 12 Ry =R,
Step 3 Multiply 12 and 2,5: result 25 R3=D1 X Ry
Step 4 Reciprocal of 25: 2,24 Ri=Rs
Step 5 | Multiply 2,24 and 12: result 28,48 Rs = Ry X Ry

TABLE 2. Simple Reciprocal algorithm

Exercise 3.1. Apply the algorithm to find the reciprocal of 1,12, using 12 as the
tail. Check that this is the same as the reciprocal in the standard table.

Exercise 3.2. Apply the algorithm to find the reciprocal of 1,30, using 30 as the
tail. Check that this is the same as the reciprocal in the standard table.

Exercise 3.3. Apply the algorithm to n = 4,10, with tail 10.

Exercise 3.4. Attempt to apply the algorithm to n = 1,10 with tail 10. Explain
what goes wrong and why.

Exercise 3.5. The algorithm makes two demands on the numbers used, that the
tail be in the standard table, and that the intermediate number computed also be
in the table. A consequence is that the algorithm can be fairly delicate. The first
regular number not in the table is n = 1,36. Use the algorithm to try to find the
reciprocal of 1,36 using 36 as the tail. Explain what happens. Now repeat the
process using 6 as the tail and explain the result.

4. THE TECHNIQUE

The classic method of determining the reciprocal in Old Babylonian mathematics
was first analyzed by A. Sachs [3], who termed the procedure, ‘The Technique’. The
technique differs from the algorithm described above by splitting Step 3 into two
steps, each of which is simpler computationally. Recall that Step 3 is the stage where
the reciprocal of the tail is multiplied by the original number n. For example, in
UET 6/2 295, the original number n is 2,5, and the tail is 5. The reciprocal of the
tail is 12 and Step 3 calls for multiplying 2,5 by 12. If we view n as split into a
head a and tail b, so that n = a+ b, then multiplying by b, the reciprocal of b, gives
nb = (a+b)b. The observation underlying The Technique is that, by distributivity,
we can write (a + b)b = ab + bb. Since b and b are a reciprocal pair, we always
have bb = 1. The Technique replaces the calculation of nb by first computing ab
and then adding 1. The advantage of this method is that since a is only the head
of n, ab is easier to compute that nb, and that regardless of n, the second term
will always be 1. The disadvantage is that it is easy to lose the sexagesimal place
and add the 1 in the wrong position. This was a relatively common error in Old
Babylonian school texts.

Taking D1 = n = 2,5, as above, The Technique gives the procedure shown in
Table 3.

Exercise 4.1. Repeat Exercises 3.1 — 3.5 using ‘The Technique’.

Here is an example of an Old Babylonian description of using The Technique,
taken from VAT 6505, probably from Sippar. The tablet is badly broken, but
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Computation Symbolic Instruction
Step 1 Split off tail: 5 Ry = tail(Dy)
Step 2 Reciprocal of 5: 12 Ry =R,
Step 3 Multiply 12 and 2: result 24 R3 = head(D1) X Ry
Step 4 Add 1: result 25 Ry=Rs+1
Step 5 Reciprocal of 25: 2,24 Rs =R,
Step 6 | Multiply 2,24 and 12: result 28,48 R = Rs X Ro

TABLE 3. ‘The Technique’, a reciprocal algorithm

contains a list of problems on reciprocals and so the contents can be reconstructed
from parallels in the different problems and knowledge of what numbers must be
there. In the translation below, no indications of breaks and restorations are given
(see [2, 1:270] and [3]).

2,13,20. What is its reciprocal?

You, in your procedure,

find the reciprocal of 3,20. You see 18.
Multiply 18 by 2,10. You see 39.

Add 1. You see 40.

Find the reciprocal of 40. You see 1,30.
Multiply 1,30 by 18.

You see 27. 27 is its reciprocal.

Such is the procedure.

According to the colophon of the tablet, this is one of 12 problems that were
originally there. However, the tablets is so broken that only portions of 5 are left.
Although 27 is a reciprocal in the standard table, and thus so is 2,13, 20, in this
case the problems form a sequence produced by the favored process of doubling and
halving. In this case, they are entries from the favorite sequence beginning with
the pair 2,5 ~ 28,48. The next entries are:

4,10 | 14,24
8,20 7,12
16,40 | 3,36
33,20 | 148
1,6,40 54

2,13,20 | 27

4,26,40 | 13,30

8,53,20 | 6,45

17,46,40 | 3,22,30

This sequence of pairs was often pursued quite a distance, not always accurately.
For example, YBC 10802 has the pair 2,22,13,20 ~ 25,12,42 (which should be
25,18,45) and MLC 651 has the pair 1,20, 54,31, 6,40 ~ 44,29, 37,50, 15, 20, where
it should have 44,29, 40, 39, 50, 37, 30 (see [3]).
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